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Abstract

Given the important contributions of semiarid region to global land carbon cycle,

accurate modeling of the interannual variability (IAV) of terrestrial gross primary pro-

ductivity (GPP) is important but remains challenging. By decomposing GPP into leaf

area index (LAI) and photosynthesis per leaf area (i.e., GPP_leaf), we investigated the

IAV of GPP and the mechanisms responsible in a temperate grassland of northwest-

ern China. We further assessed six ecosystem models for their capabilities in repro-

ducing the observed IAV of GPP in a temperate grassland from 2004 to 2011 in

China. We observed that the responses to LAI and GPP_leaf to soil water signifi-

cantly contributed to IAV of GPP at the grassland ecosystem. Two of six models

with prescribed LAI simulated of the observed IAV of GPP quite well, but still
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underestimated the variance of GPP_leaf, therefore the variance of GPP. In compar-

ison, simulated pattern by the other four models with prognostic LAI differed signifi-

cantly from the observed IAV of GPP. Only some models with prognostic LAI can

capture the observed sharp decline of GPP in drought years. Further analysis indi-

cated that accurately representing the responses of GPP_leaf and leaf stomatal con-

ductance to soil moisture are critical for the models to reproduce the observed IAV

of GPP_leaf. Our framework also identified that the contributions of LAI and

GPP_leaf to the observed IAV of GPP were relatively independent. We conclude

that our framework of decomposing GPP into LAI and GPP_leaf has a significant

potential for facilitating future model intercomparison, benchmarking and optimiza-

tion should be adopted for future data-model comparisons.

K E YWORD S

data-model comparison, ecosystem models, grassland, gross primary productivity, interannual

variability

1 | INTRODUCTION

Arid and semiarid regions cover ca. 40% of global land surface area

(Safriel & Adeel, 2005). Ecosystems in these regions are fragile and

sensitive to climate variation (Rotenberg & Yakir, 2010). A previous

study showed that fluctuations in carbon uptake by these ecosys-

tems as a result of climate variation played an important role in glo-

bal carbon cycle and carbon-climate feedback (Ahlstrom et al., 2015).

Given such an importance of arid and semiarid ecosystems and pro-

jected more frequent and severe extreme climate events (Dai, 2013;

Huang, Guan, & Ji, 2012) associated with the shifts in precipitation

regimes (Craine & Brunsell, 2012; Wilcox, Fischer, Muscha, Petersen,

& Knapp, 2015) in the future, accurate prediction of the responses

of carbon balance in semiarid ecosystems to climatic variations is

critical for improving predictions of future land carbon cycle and cli-

mate change.

Ecosystem and land surface models are commonly used for diag-

nosing and predicting ecosystem functioning in a changing climate

(Cramer et al., 2001; Friedlingstein et al., 2006). However, there are

still large uncertainties in model estimates of carbon balance, largely

as a result of biases in modeled processes, such as carbon allocation

(e.g., Haverd et al., 2016; Restrepocoupe et al., 2016), CO2 fertiliza-

tion effect (e.g., Piao et al., 2013; Smith et al., 2016), nutrient limita-

tions (e.g., Agren, Wetterstedt, & Billberger, 2012; Reich et al.,

2006), and soil water stress on vegetation (e.g., De Kauwe et al.,

2015; Luo, Liang, & Mccarthy, 2013). For example, the estimated

global land gross primary productivity (GPP) by CMIP5 models varied

90–210 Gt C/year over the present period (Li et al., 2018; Prentice,

Liang, Medlyn, & Wang, 2015). Specifically, at the global scale, car-

bon balance in semiarid ecosystems is mainly associated with GPP

variations resulting from circulation-driven variations of precipitation

(Ahlstrom et al., 2015). Therefore, it is necessary to first analyze

modeled primary productivity, a key component determining ecosys-

tem carbon balance, for understanding the modeled response of net

ecosystem productivity (NEP) to climate drivers in semiarid ecosys-

tems, in particular at the interannual time-scale.

To reduce model uncertainties in simulating carbon cycle, the

modeling community has made great efforts in benchmarking models

against observations at various spatio-temporal scales (e.g., Best

et al., 2015; Luo et al., 2012). Some frameworks are proposed to

identify key processes underlying the intermodel divergence through

decomposing a target model output into a number of component

variables, each of which represents a subset of underlying processes

(Xia, Luo, Wang, & Hararuk, 2013; Zaehle et al., 2014). For example,

ecosystem net primary productivity has been decomposed as the

product of nitrogen use efficiency and nitrogen uptake (Zaehle et al.,

2014) or the product of carbon use efficiency and GPP (Xia et al.,

2017) in evaluating terrestrial ecosystem models. However,
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difficulties exist with these frameworks because the components

usually interact with each other and those interactions often are dif-

ficult to be observed and quantified (e.g., nitrogen use efficiency).

In order to identify key processes determining the interannual

variations in ecosystem GPP of a temperate grassland, here we pro-

pose a top-down component analysis framework (Figure 1) that

decomposes GPP into two contributing components: leaf area index

(LAI) and the ratio of GPP over LAI (GPP/LAI, hereafter GPP_leaf).

LAI and GPP_leaf represent structural and physiological contributions

to vegetation productivity respectively. LAI is generally determined

by the fraction of carbon assimilate allocated to leaf (Murray-Tortar-

olo et al., 2013; Restrepocoupe et al., 2016) while GPP_leaf is deter-

mined mostly by the leaf-scale net photosynthesis (An). GPP_leaf is

largely regulated by two physiological factors, namely maximum

RuBP carboxylation rate, Vcmax, and stomatal conductance, gs (Fig-

ure 1). Both Vcmax and gs vary significantly with available soil water,

particularly in semiarid ecosystems. This framework facilitates com-

parison of model simulations directly with observations without

derivations. In addition, the processes affecting LAI and GPP_leaf are

relatively independent, which is helpful for benchmarking ecosystem

models and identifying key model uncertainties.

In this study, we compared the observed interannual variations

in GPP with the modeled by six ecosystem models at a temperate

grassland site. Using the framework mentioned above, i.e., decom-

posing GPP into LAI and GPP_leaf, we compared modeled LAI and

GPP_leaf with the observed. The objectives of this study are to (1)

quantify how changes in precipitation, especially droughts, affected

the interannual variability in GPP at the grassland ecosystem, (2) test

whether the models can capture the observed interannual variability

in GPP, especially the GPP reductions in drought years, (3) ascertain

which component, i.e., LAI or GPP_leaf, contributes to the model’s

failure to capture the GPP variation, and (4) identify the key model

assumptions leading to the bias between models and observations.

2 | MATERIALS AND METHODS

2.1 | Site and measurements

The site is located at the Xilingol temperate grassland ecosystem

research station (44°330N, 116°400E, hereafter CN-Nmg) in Inner

Mongolia in northwestern China, with an elevation of 1,190 m. The

grassland ecosystem is water-limited, and experienced several

droughts during 2004–2011 (Guo et al., 2015). From 1982 to 2003,

the mean annual surface air temperature is �0.4°C and the mean

annual precipitation is 350 mm, of which approximately 80% falls

during the growing season when >95% of annual GPP is produced

(May-September, i.e., DOY 120-270). The dominant species are Ley-

mus chinesis, Stipa grandis, and Agropyron cristatum with an average

canopy height of 0.5 m and a maximum leaf area index of 1.5 m2/

m2 (Hu et al., 2008). The soil texture is medium loam (8%/90%/2%

for sand/silt/clay), and the average surface bulk density (0–10 cm) is

1.20 g/cm3.

An eddy covariance (EC) system was mounted onto a tower at a

height of 1.5 m, consisting of a three-dimensional sonic anemometer

(Model CSAT3, Campbell Scientific Inc., Logan, UT, USA) and a CO2/

H2O analyzer (Model LI-7500, Li-Cor Inc., NE, USA). Meteorological

variables, such as air temperature, precipitation, global radiation and

relative humidity, and volumetric soil water content (VWC) at the

depths of 5, 20, and 40 cm were collected at a half-hourly time-step.

Quality control and gap-filling were performed according to the stan-

dard ChinaFlux processing method (Yu et al., 2006). GPP was calcu-

lated as the sum of NEP and ecosystem respiration (Reco) with the

latter derived from the relationship between nighttime NEP and soil

temperature and soil water content. The energy balance ratio during

2004–2011 ranged from 0.81 to 1.07, suggesting good quality of EC

measurements (Figure S1).

To obtain a LAI for the site, we estimated LAI with MODIS NDVI

(8-day, 250 m) via an exponential function established at the same

site (LAI = 0.106e4.064NDVI, R2 = .94) and used this function and

NDVI data to estimate the daily LAI of the entire growing seasons

(Hu et al., 2009). To establish this function, LAI was measured by

harvesting the live leaves of aboveground biomass at six 1 9 1 m2

quadrats and measuring the leaf area with the scanning method at

2-week intervals in the growing seasons of 2003–2006 (Hao et al.,

2010).

2.2 | Terrestrial ecosystem models

Six process models were used in this study, including BEPS (Chen,

Liu, Cihlar, & Goulden, 1999), Biome-BGC (Thornton et al., 2002),

CABLE (Wang et al., 2011), CLM (Oleson et al., 2010), ORCHIDEE

(Krinner et al., 2005), and TECO (Weng & Luo, 2008). The key pro-

cesses of primary productivity are listed in Table 1.

F IGURE 1 An illustration of the hierarchical processes that
control the responses of vegetation productivity to rainfall in a
temperate grassland. Rainfall recharges volumetric soil water content
(VWC), while VWC affects leaf net photosynthesis (An) through
regulating the maximum RuBP carboxylation rate (Vcmax) and leaf
stomatal conductance (gs). An is the major determinant of gross
primary productivity (GPP) per leaf area (GPP_leaf). At the canopy
level, GPP is codetermined by GPP_leaf (a physiological factor) and
leaf area index (LAI, a structural factor) [Colour figure can be viewed
at wileyonlinelibrary.com]
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All models adopt a biochemical model of photosynthesis coupled

with stomatal conductance to calculate net carbon assimilation. The

net photosynthesis, An, is calculated following Farquhar, Von Caem-

merer, and Berry (1980) as the minimum of Rubisco-limited and

light-limited potential capacities, or Collatz, Ball, Grivet, and Berry

(1991) assuming a third limitation on An by the rate of export or uti-

lization of the photosynthesis products. As a key parameter deter-

mining An, Vcmax is estimated differently among the six models, but

in general as a function of leaf nitrogen concentration, leaf age, air

temperature, or soil water (Table 1). Plant stomatal conductance, gs,

which is another key variable determining leaf photosynthesis, is

estimated in two ways. The first (e.g., BEPS and Biome-BGC) down-

regulates a maximum stomatal conductance by environmental

constraints, including photosynthetic photo flux density (PPFD), air

temperature (Ta), vapor pressure deficit (VPD), and soil water poten-

tial (Ψs) etc. (e.g., Jarvis, 1976). The second (e.g., CABLE, CLM,

ORCHIDEE, and TECO) adopts the Ball-Berry model or its variants

to relate gs and An through a semiempirical function consisting of

environmental factors, e.g., air relative humidity or VPD, and soil

water content (Ball, Woodrow, & Berry, 1987; Leuning, 1995). It is

noted that four models, BEPS, Biome-BGC, CABLE and TECO,

explicitly consider soil water stress (f(hs), f(Ψs) or fw) on gs but not on

Vcmax, whereas CLM and ORCHIDEE include no explicit soil water

constraint on gs but on Vcmax.

Prescribed daily LAI is used for BEPS and CABLE but prognostic

LAI for other models, which estimate LAI with leaf biomass and a

constant parameter, specific leaf area (SLA). Except ORCHIDEE, all

the models use the scheme of sunlit and shaded leaves to calculate

canopy level photosynthesis. The models differ significantly in char-

acterizing soil water profile, number of soil layers, distribution of

root density, and dependence of soil water uptake on soil water and

root density (Table 1).

2.3 | Data-model comparison

To ensure the model outputs comparable, we set out a protocol

before running the models: (1) all models use the same site infor-

mation, including meteorological driving forcing (air temperature,

precipitation, wind speed, solar radiation, vapor pressure deficit,

and surface atmospheric pressure at daily or hourly time-scale),

and daily leaf area index (if necessary) as inputs; (2) all models

use model-specific default parameters except soil texture, C:N

ratios of leaf, root and litter (16, 34, 37), SLA (25 m2/kg), and

spin up using meteorological forcing during 2004–2011; (3) models

outputs includes GPP, ET, LAI (if not prescribed), VWC in the first

30 cm of soil depth, Vcmax, and leaf stomatal conductance (both

shaded and sunlit leaves).

Except calculating the sum for GPP, mean daily LAI, GPP_leaf

and VWC in 0–30 cm over the growing season (May to September,

i.e., DOY 120-270) were calculated as annual values for both the

observations and model outputs. To identify the primary component

influencing the observed interannual variability in GPP, the three

variables (GPP, LAI, and GPP_leaf) were regressed against

corresponding interannual changes in environmental variables

respectively. After doing this, model simulations were compared with

observations to investigate whether models can reproduce the inter-

annual variations of GPP, LAI, and GPP_leaf, particularly in drought

years. The modeled responses of GPP, LAI, and GPP_leaf to environ-

mental factors (especially VWC) were further examined at both the

daily and annual time-scales. At the daily time-scale, only data during

the peak growing season (Day 180–200) when LAI was relatively

constant were used to exclude the influence of LAI. For models

using the two-leaf scheme to estimate canopy level fluxes, we used

sunlit-leaf gs and Vcmax for analysis, because of the dominant contri-

bution to ecosystem GPP by sunlit leaf.

3 | RESULTS

3.1 | Interannual variations in GPP and relevant
variables

Observations showed that the ecosystem experienced significant

precipitation deficits in the growing seasons of 2005 and 2009,

resulting in drastic reductions of GPP, particularly in 2009 (Figure 2).

In addition to GPP, both LAI and ET decreased in the drought years,

but the degrees of reduction were less than that of GPP. For exam-

ple, compared with a mean reduction in 66.9% for GPP, ET, and LAI

showed relatively small reductions (28.9% and 26.4%) in the drought

years compared with the other years (Figure 2b).

Further analysis showed that interannual variation in GPP was

significantly correlated with soil water content (R2 = .65, p < .05,

Figure 3), but not with other environmental variables, e.g., air tem-

perature (Figure S2) and VPD (Figure S3). For the two components,

both GPP_leaf and LAI showed significant positive correlation with

VWC (Figure 3, p < .05). In comparison, the R2 of LAI (.42) was

apparently smaller than that of GPP_leaf (0.82). This suggests that

changes in GPP_leaf contributed more to the interannual variations

in GPP than LAI.

3.2 | Data-model comparison of the determinants
of GPP variations

As compared with the observed annual GPP, the modeled GPP by

the six models all have different biases (Figure 4). The two models

with observed LAI as inputs (i.e., BEPS and CABLE) captured the

observed interannual variations in GPP with VWC quite well. The R2

between observed and modeled GPP were as large as .92 and .86

for BEPS and CABLE, respectively (p < .01), which were better than

the performance of other four models with prognostic LAI. This indi-

cates that LAI is critical for models to simulate the interannual varia-

tions in GPP accurately at the study site. However, at the same

time, both BEPS and CABLE underestimated the GPP interannual

variability. For example, the coefficient of variation (CV) of the simu-

lated GPP by BEPS and CABLE was 0.20 and 0.15, respectively,

which was >60% lower than the CV of GPP derived from eddy

covariance system (0.49). The key reason for the underestimation by
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the two models is that the estimated interannual varations of

GPP_leaf were much lower than the observation (Figure 4e,f).

The four remaining models with prognostic LAI (i.e., Biome-BGC,

CLM, ORCHIDEE, and TECO) simulated the interannual variations in

GPP poorly (Figure 4a). No significant correlation was found

between the modeled and observed GPP for the four models (Fig-

ure 4b). The dominant source of the unsatisfactory performance is

that all the models failed to reproduce the observed interannual vari-

ation in LAI. Further analysis indicated that the modeled LAI by all

these four models were not significantly correlated with the

observed (Figure 4d, p > .05). In particular, none of the four models

correctly captured the observed large reduction in canopy LAI in

two drought years (2005 and 2009).

Although the four models generally simulated GPP poorly due to

the failure of reproducing the interannual variations in LAI, three

models, Biome-BGC, CLM, and ORCHIDEE correctly captured the

observed reductions in GPP in two drought years (i.e., 2005 and

2009) (see Figure 4a). Further analysis indicates that simulated

GPP_leaf by the three models were significantly correlated with the

measurements (p < .05, Figure 4f), which contributed to the success

in capturing the interannual variation in the observed GPP by these

three models over the other models.

Observations illustrated a predominant role of soil water content on

the interannual variations in GPP, highlighting the importance of accu-

rate estimate of VWC. Our results indicated that none of the six models

were able to reproduce the observed VWC of the whole growing sea-

son (Figure S4, p > .05). However, over the period of July to August,

during which the total GPP contributed on average 56% of annual GPP

(the R2 of the relationship between annual GPP and GPP in July-August

was as high as .96), Biome-BGC (R2 = .63), CLM (R2 = .41), and ORCHI-

DEE (R2 = .90) captured the interannual variations in VWC quite well

(Figure 5, p < .05). This indicates that the three models captured the

reductions in GPP in drought years because they reproduced the

observed VWC-GPP relationship well. For other models with prognostic

LAI (e.g., TECO), it would be difficult to reproduce the interannual varia-

tions in GPP because of the poor performance in predicting the interan-

nual variations of VWC.

F IGURE 2 Observations of (a) daily GPP and evapotranspiration (ET), (b) LAI, (c) VWC in the top 0–30 cm soil and precipitation at the
temperate grassland site from 2004 to 2011. Numbers in (c) are the annual GPP in g C m�2 year�1 and average VWC in fraction by volume
during the growing season of each year (May-September, DOY 120-270) [Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 3 Correlations between average daily VWC in the top
0–30 cm soil with (a) annual GPP, (b) mean daily LAI, and (c) mean
daily GPP_leaf of the growing seasons from 2004 to 2011
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3.3 | Simulations of water constraints on GPP, LAI,
and GPP_leaf

In addition to capturing the VWC variations during critical growing

periods (July-August), the three models (i.e., Biome-BGC, CLM, and

ORCHIDEE) also captured the correlation between soil water con-

tent and GPP, and GPP_leaf (Figure 6). Similarly, at the daily time-

scale, the three models predicted a significant positive response of

GPP_leaf to soil water content (p < .05), which was consistent with

the observations (Figure 7). This suggests that, reproducing soil

moisture in critical growing periods and the VWC-GPP_leaf relation

can compensate for the poor estimates of LAI to a large extent, thus

contributing the success of the three models in capturing GPP

reductions in the drought years. Note that the simulated sensitivity

(i.e., the slope of VWC-GPP relationship) by CLM and Biome-BGC

was apparently lower than the observations, which in part explained

the underestimation of GPP reduction in the drought years by these

two models.

For the remaining three models (BEPS, CABLE and TECO), in

addition to failure of capturing the VWC-LAI relation, they also

failed to capture the VWC-GPP_leaf relation at both annual and

daily scales, resulting in the failure of reproducing the observed

VWC-GPP relationship (Figures 6 and 7).

3.4 | Effects of stomatal conductance and Vcmax on
GPP variations

Since gs and Vcmax are the key model parameters determining

GPP_leaf, we further investigated the performance of models in

simulating responses of gs and Vcmax to soil water content. Appar-

ently, all the three models (i.e., Biome-BGC, CLM and ORCHIDEE)

that captured the observed VWC-GPP_leaf relationship with some

F IGURE 4 Comparison of modeled
annual GPP (a, b), LAI (c, d), and GPP_leaf
(e, f) with observations. BEPS and CABLE
used prescribed LAI as input and thus are
not shown in the LAI comparison. In (b)
and (f), only the fitted lines that are
statistically significant at the level of 0.05
are shown [Colour figure can be viewed at
wileyonlinelibrary.com]
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success also produced a significant correlation between gs and

VWC (Figure 8). Correspondingly, the models that failed to cap-

ture the VWC-GPP_leaf relation (BEPS, CABLE, and TECO) also

failed to produce positive VWC-gs relationship. In comparison,

except CLM, which illustrated positive correlation between VWC

and Vcmax when VWC was at median to lower levels, all the mod-

els simulated nonsignificant VWC-Vcmax correlation (Figure S5,

p > .05). The above results suggest that stomatal conductance

possibly dominated the response of GPP_leaf to variations in soil

moisture in the models.

4 | DISCUSSION

4.1 | Interannual variations in GPP due to changes
in water availability

We found that changes in VWC were the key reason causing the

interannual variations in GPP in the temperate grassland. Especially,

sharp reductions in GPP were detected in drought years (Figure 2).

Our finding is consistent with previous studies, which showed that

annual ecosystem carbon exchange and primary productivity were

mainly determined by water availability in ecosystems under semiarid

and arid climates (Guo et al., 2015; Knapp & Smith, 2001).

We found the reductions in LAI in drought years were smaller

than that of GPP and GPP_leaf, and the R2 between VWC and

GPP_leaf was larger than that of VWC and LAI, suggesting that

changes in GPP_leaf contributed more to the variance of annual

GPP than LAI. This result is consistent with the processes of plant

physiology, since changes in GPP_leaf (i.e., photosynthesis) is a first-

order consequence and changes in LAI is a second-order conse-

quence owing to changes in environmental conditions. Severe water

stress can cause damage of leaf growth (Peters, Yao, Browning, &

Rango, 2014) and trigger leaf senescence or even mortality of vege-

tation (Tan et al., 2013). However, before the threshold where water

stress can produce permanent damage, LAI would remain relatively

constant despite decline of GPP. This mechanism would be critical

for the grassland species living in arid and semiarid environments,

which have evolved to cope with frequent drought during growing

seasons in the region.

Owing to the high within-year variations in soil water content,

LAI also varied considerably during the growing seasons in some

ecosystems, which contributed significantly to the observed IAV of

GPP and poses another challenge for the present generation of mod-

els. For example, in a similar model-data intercomparison at a tem-

perate grassland in Wyoming, USA, De Kauwe et al. (2017) found

that the models failed because they did not reproduce the variation

in greenness (a proxy of LAI) within each year as a function of soil

F IGURE 5 Data-model comparisons of
interannual variations in VWC (0–30 cm).
VWC was the mean of July to August
(DOY 181-240). (a) Interannual variations
in observed and modeled VWC. (b)
Correlations between modeled and
observed VWC. Only the fitted lines that
are statistically significant at the level of
0.05 are shown [Colour figure can be
viewed at wileyonlinelibrary.com]

F IGURE 6 Correlations between average VWC in growing
season and (a) annual GPP, (b) mean daily LAI in growing season,
and (c) mean GPP_leaf of growing season for both observations and
models. R2 is the coefficient of determination of the linear
relationships [Colour figure can be viewed at wileyonlinelibrary.com]
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moisture availability. At our study site, we also detected a certain

degree of temporary pauses of LAI increase during growing seasons

when VWC fell low (Hao et al., 2010). However, in contrast with the

large fluctuations of LAI due to changes in VWC at the site of De

Kauwe et al. (2017), the seasonal LAI were relatively smooth and

independent from the seasonal variations in soil water content.

In this study, GPP was calculated as the sum of NEP and Reco.

Since soil water content was used to estimate Reco, and this may

contributed to the observed annual GPP-VWC relationship. Note

that the VWC at soil surface (at the depth of 5 cm) was used to

estimate Reco, but that of the average of rooting zone (0–30 cm) was

used for investigating the GPP-VWC relation. Considering the con-

trast magnitudes and dynamics of soil moisture at different soil

depths (Guo et al., 2015), the estimate of Reco with VWC con-

tributed minor to the annual GPP-VWC relationship.

4.2 | Uncertainties in simulating LAI

Our results indicate that, during the whole study period, the models

with prescribed LAI (i.e., BEPS and CABLE) reproduced the

interannual variations of the observed GPP well. In contrast, the

models that yielded poor estimate of LAI predicted relatively larger

biases of the observed interannual variations in GPP. These results

highlight the importance of improving LAI simulation for predicting

GPP in the grassland ecosystems (De Kauwe et al., 2017).

All the four prognostic models in our study failed to capture the

interannual variations in LAI, as well as the VWC-LAI relationship in

the grassland ecosystem, largely as a result of the large errors in rep-

resenting the influences of available soil water on carbon allocation.

Plant tends to optimally utilize changing resources by adjusting the

fractions of carbon allocation in above- vs. below-ground compart-

ments, e.g., more leaves when water is abundant and more roots

when water stress occurs (Haverd et al., 2016). However, besides

models employing a fixed ratio of carbon allocation to leaves and

roots (e.g., Biome-BGC), the models using dynamic carbon allocation

with changes in resources availability (e.g., ORCHIDEE and TECO)

were still failed in predicting interannual LAI dynamics in response to

VWC. This implies that the current parameterization scheme based

on resource limitation failed to account for the impact of soil water

content on carbon allocation, at least at annual time scale, which is

F IGURE 7 Correlations between daily
VWC and GPP_leaf for both observations
and models during the peak growing
season (DOY 180-200). Only significant
relationships at the level of 0.05 are
shown [Colour figure can be viewed at
wileyonlinelibrary.com]

F IGURE 8 Correlations between daily
gs and VWC for participating models
during day of year (DOY) 180-200 in all
years. Only significant relationships
(p < .05) are shown [Colour figure can be
viewed at wileyonlinelibrary.com]
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critical for simulating GPP in ecosystems under arid and semiarid

environments.

Beside the uncertainty induced by imperfect carbon allocation

schemes, the constant SLA used in the models may also contribute

to the biased estimation of LAI. Observations show that SLA varies

throughout the growing season (Tardieu, Granier, & Muller, 1999) as

a result of varying nitrogen availability (Amanullah, Nawab, & Ali,

2013) and drought stress (Liu & Stutzel, 2004). A previous study

found that constant SLA in models significantly contributed to the

biases of modeled LAI (Drewniak, Song, Prell, Kotamarthi, & Jacob,

2013). Therefore, for improving models’ performance in predicting

the temporal variations in LAI, dynamic measurements of SLA and

clarifying the controlling factors in various environmental conditions

are needed.

4.3 | Uncertainties in simulating GPP_leaf

Our results highlight the importance of the physiological component,

GPP_leaf in determining the interannual variations in GPP. The

importance of plant physiological processes in regulating the spa-

tiotemporal variations of GPP has been widely reported in recent

years (Xia et al., 2016; Zhou et al., 2016). Owing to failing to repro-

duce the interannual variability in GPP_leaf, the models with pre-

scribed LAI (i.e., BEPS and CABLE) underestimated the interannual

variability in GPP (Figure 4). In contrast, because of the success of

reproducing the interannual variations in GPP_leaf, the three models

with prognostic LAI (i.e., Biome-BGC, CLM, and ORCHIDEE) cap-

tured the GPP reductions in drought years. This phenomenon is

unexpected because a general view is that LAI overwhelmingly domi-

nates the interannual variations in GPP (Duursma et al., 2009; Puma,

Koster, & Cook, 2013). As we discussed above, however, changes in

LAI is a consequence of changes in leaf photosynthesis. Thus, intu-

itively GPP_leaf should be more variable than LAI in response to soil

water stress. This observation was not successfully captured by most

of the six models.

The diverging performances on simulating GPP_leaf is also sur-

prising since most models employ Farquhar’s scheme (or its variants)

to simulate leaf photosynthesis and thus the simulated GPP_leaf or

at least the VWC-GPP_leaf relation should be similar among the six

models. However, parameterization of stomatal conductance and

Vcmax differ significantly among the six model, which may have con-

tributed to the diverging responses of GPP_leaf to VWC by those

models. Further analysis indicates that the models with acceptable

performance on simulation of GPP_leaf also performed better in sim-

ulating VWC-GPP_leaf relation and VWC-gs relation (Figures 6–8).

This implies that the model capability in capturing gs sensitivity to

soil water content critically impacts on its ability in accurately simu-

lating GPP_leaf prediction, thus GPP for the semiarid grassland.

The simulated gs among the six models differed as much as five-

fold, many factors, such as how the biochemical model of photosyn-

thesis is parametrized, and coupling of gs and photosynthesis, and

their responses to environmental variable may contribute to the dif-

ference. Because of the dominant influences of soil water on all

major processes, we focused on the VWC-gs relationship, not the

magnitude of gs in our study. All the six models except CLM and

ORCHIDEE explicitly include soil water stress functions on gs

(Table 1). However, models (e.g., BEPS, CABLE, and TECO) including

a water scalar on gs is till failed in reproducing the observed

responses of gs and GPP_leaf to VWC. Therefore, the water con-

straints in gs models of BEPS, CABLE, and TECO has large model

errors. Unfortunately, we did not successfully identify the underlying

causes for the large errors in the modeled gs in this study. This

should be explored further in future studies.

4.4 | Uncertainties in simulating soil moisture

Soil water content was found to be the key factor driving the inter-

annual variations in LAI and GPP_leaf at the grassland site. Only

three models reproduced the observed interannual variations in

VWC of the critical growth periods (Figure 5). Since the models used

the same soil water-holding capacity and were driven by the same

precipitation forcing, possible sources of the intermodel difference in

VWC includes errors in the modeled ET, runoff, and vertical move-

ment of soil moisture. All the models except TECO illustrated similar

interannual variations in ET (mean R2 of intermodel relationships was

.75, Figure S6). For example, the R2 of simulated ET by CABLE and

ORCHIDEE was as high as .96, but very low for VWC by the two

models (R2 = .25, p > .05). This indicates that ET is not likely to be

the dominant source of errors in the modeled VWC. It is possible

that large errors resulted from different effective soil depths or verti-

cal distribution of roots in soil (Table 1). Those differences will result

in different estimates of runoff and VWC in the rooting zone. Fur-

ther studies are warranted to investigate how changes of root distri-

bution affect soil water profile in the rooting zone.

We also found that none of the six models were able to capture

the observed interannual variation in mean VWC (and ET) of the

whole growing seasons (Figure S4). Before July and August, vegeta-

tion cover was low, soil water evaporation accounted for most of ET

in the grassland (Hu et al., 2009). Inaccurate simulation of soil evap-

oration in early growing seasons may have contributed to the errors

in ET and VWC of the whole growing season. As also found by De

Kauwe et al. (2017), the estimated soil evaporation for a temperate

grassland can differ significantly among different models.

4.5 | Implications of the GPP component analysis
framework for model improvements

In this study, we proposed a component analysis framework to iden-

tify the sources of model uncertainty on GPP prediction. The advan-

tages of the framework lie in two aspects. First, the two

components of GPP are relatively independent in model representa-

tions, i.e., LAI involved in carbon allocations and GPP_leaf mainly

related with leaf-scale eco-physiological processes. Thus, the effects

of these two subprocesses can be independently examined. Second,

both GPP and LAI can be directly measured or derived conveniently

using current technologies. These advantages can help address the
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deficits of models in describing vegetation physiological vs. structural

characteristics under environmental limitations. Therefore, our frame-

work has the potential to facilitate future model intercomparison,

benchmarking and optimization.
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